SMART: The Stochastic Monotone Aggregated Root-Finding Algorithm

نویسنده

  • Damek Davis
چکیده

We introduce the Stochastic Monotone Aggregated Root-Finding (SMART) algorithm, a new randomized operator-splitting scheme for finding roots of finite sums of operators. These algorithms are similar to the growing class of incremental aggregated gradient algorithms, which minimize finite sums of functions; the difference is that we replace gradients of functions with black-boxes called operators, which represent subproblems to be solved during the algorithm. By replacing gradients with operators, we increase our modeling power, and we simplify the application and analysis of the resulting algorithms. The operator point of view also makes it easy to extend our algorithms to allow arbitrary sampling and updating of blocks of coordinates throughout the algorithm. Implementing and running an algorithm like this on a computing cluster can be slow if we force all computing nodes to be synched up at all times. To take better advantage of parallelism, we allow computing nodes to delay updates and break synchronization. This paper has several technical and practical contributions. We prove the weak, almost sure convergence of a new class of randomized operator-splitting schemes in separable Hilbert spaces; we prove that this class of algorithms convergences linearly in expectation when a weak regularity property holds; we highlight connections to other algorithms; and we introduce a few new algorithms for large-scale optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proximal Point Algorithm for Finding a Common Zero of a Finite Family of Maximal Monotone Operators

In this paper, we consider a proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in real Hilbert spaces. Also, we give a necessary and sufficient condition for the common zero set of finite operators to be nonempty, and by showing that in this case, this iterative sequence converges strongly to the metric projection of some point onto the set of c...

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered‎. ‎The coefficients are assumed to have linear growth‎. ‎We do not impose coercivity conditions on coefficients‎. ‎A novel method of proof for establishing existence and uniqueness of the mild solution is proposed‎. ‎Examples on stochastic partial differentia...

متن کامل

Stochastic Approximations and Perturbations in Forward-Backward Splitting for Monotone Operators∗

We investigate the asymptotic behavior of a stochastic version of the forward-backward splitting algorithm for finding a zero of the sum of a maximally monotone set-valued operator and a cocoercive operator in Hilbert spaces. Our general setting features stochastic approximations of the cocoercive operator and stochastic perturbations in the evaluation of the resolvents of the set-valued operat...

متن کامل

Maximizing a Class of Utility Functions Over the Vertices of a Polytope

Given a polytope X, a monotone concave univariate function g, and two vectors c and d, we consider the discrete optimization problem of finding a vertex of X that maximizes the utility function c′x+g(d′x). This problem has numerous applications in combinatorial optimization with a probabilistic objective, including estimation of project duration with stochastic times, in reliability models and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015